How to evaluate driver roles of candidate disease genes?

Project tes	it	Organism: huma	an 👻		
Altered	gene sets Network	Functional gene set	s Chec	k and submit	Results
Submit	gene/protein groups that	you want to character	ize	to a list of IDec	
Upload	a local file:		BCL11A		
Brows	No file selected.		BRCA2		
If file is	already there: List files		CSF3R CSMD3		
			DSP		
As an example, w	e investigat	e roles	IDH1		
			INHBE ITCB2		
of point mutations in	i one somat	.IC	LDHA		
genome of alightasta	oma multifo	rme	MAPK10	0	
Scholle of ghobidste		-	MAPK9		
We start by pasting	the whole li	st of	MKL1		
21 mutations in the	first tob "Alt	arad	MN1		
34 mutations in the	Institad All	ered	NRAP		
gene sets". Although	, each gene	is /	PCDH2	D	
going to be analyzed	separately		PDZD2 PRKD2		
(cubmitting the list y	, Yould just s		PTEN		
(submitting the list v	voulu just se	ave	SLC2A2 STK36		
time). Note that you	can also su	bmit	SYNE1 TAS1R1		
them as a text file, e	.g. <u>this one</u>	and	TBK1 TGFBR2		
select mutations for	particular c	ancer	TMBIM4 TNK2	ł	
genome (column 3).	Second, we	will	VAV1		
select a network in t	he next tab	(see			
details in tutorial "H	ow to begin	?").			

ect test	Organis	m: human	•			
tered gei	ne sets Network Functional	gene sets Che	eck and submit	Results	Help	
				O		[?]
elect col	lection(s) of functional gene sets.	Search	:	Past	e a list of IDs:	
Incude	Source	🔶 No. of ger	nes 🔶 No. of gr	oups 🔶		
	BioCarta	1259	219			
	CPW_collection	1529	42			
	GO biological process	6032	825			
	GO collular compartment	5115	233			
	GO molecular function	5190	396			
	KEGG pathways, all	4851	236			
	KEGG pathways, basic	1878	133			
	KEGG pathways, disease	44	35			
	KEGG pathways, signaling	3069	68			

Following scenario 2, we investigate how the genes relate to known pathways. For cancer applications one can utilize the group of 42 database- and publicationbased cancer pathways "CPW_collection". Similarly to scenario 1, we use checkbox "Analyze AGS genes / proteins individually" at the next tab.

This gives many more findings than scenario 1 which is mostly due to using many more sets of much better characterized genes. However this approach requires a control analysis: how many such findings would be made for a randomly picked gene set of size 34?

Thus, stronger evidence was accumulated in the both scenarios for MALX9 and NTRK1 and a few other genes scored high against multiple cancer pathways (e.g. TNK2, TGFBR2). See <u>another analysis</u> of the same mutation list using other parameters.

However a full-scale statistical framework should be implemented for a systematic analysis of multiple cancer genes and genomes. Examples can be found in Merid et al., 2014 and might require additional information from the same samples (methylation, copy number events etc.). Required software in R and/or perl can be downloaded from https://www.evinet.org

Search:AOC 3Incude & SourceNo. of genesNo. of groupsBCL11ABIoCarta1259219DSPCPW_collection152942DH1GO biological process6032825ITG82GO cellular compartment5115233MAPK10GO molecular function5190396MKL1KEGG pathways, all4851236MIH1KEGG pathways, disease74435PCDH20KEGG pathways, signaling306968PRK0 CMetaCyc pathways2933486SLC2 A2Reactome pathways4075430SYNE	Select colle	ction(s)	of functional	gene sets.) Pas	te a list of	IDs:
Incude &SourceNo. of genesNo. of BCL11A BRCA2BioCarta1259219DSPCPW_collection152942IDH1GO biological process6032825IDHAGO cellular compartment5115233MAPK10GO molecular function5190396MKL1KEGG pathways, all4851236MLH1KEGG pathways, disease74435PCDH20KEGG pathways, signaling306968PRKI 2MetaCyc pathways2933486STK36Reactome pathways4075430STK36				-	Searc	h:	AO	C3	
BioCarta1259219CSMD3 DSPCPW_collection152942IDH1 INHBEGO biological process6032825ICG82 LDHAGO cellular compartment5115233MAPK10 MAPK7GO molecular function5190396MAPK9 MKL1KEGG pathways, all4851236MLH1 MN1KEGG pathways, disease74435PDZ12KEGG pathways, signaling306968PRKI 2 PRKI 2MetaCyc pathways2933486SLC2A2 STK36Reactome pathways4075430STK36	Incude 🔺	Sour	rce		♦ No. of genes	♦ No. of groups		L11A CA2 F3R	
CPW_collection152942DSTGO biological process6032825ITG82GO cellular com partment5115233MAPK10GO molecular function5190396MAPK9KEGG pathways, all4851236MLH1KEGG pathways, basic1878133NRAPKEGG pathways, disease74435PCDH20MetaCyc pathways, signaling306968PRKI 2MetaCyc pathways2933486SLC2 A2Reactome pathways4075430SYNE		BioCa	irta		1259	219	DS	MD3 P	
GO biological process6032825INHBE ICG2 LDHAGO cellular compartment5115233MAPK10 MAPK7GO molecular function5190396MAPK9 MKL1KEGG pathways, all4851236MLH1 MN1KEGG pathways, basic1878133NRAP NTRK1KEGG pathways, disease74435PCDN20 PDZ12KEGG pathways, signaling306968PRK0 C PTENMetaCyc pathways2933486SLC2 A2 STK3 6Reactome pathways4075430SYNE1		CPW_	collection		1529	42	DS IDF	Г]	
GO cellular compartment5115233MAPK10 MAPK7GO molecular function5190396MAPK9 MKL1KEGG pathways, all4851236MKL1KEGG pathways, basic1878133NRAP NTRK1KEGG pathways, disease74435PCDH20 PDZD 2KEGG pathways, signaling306968PRKD 2 PRKD 2MetaCyc pathways2933486SLC2A2 STK3 6Reactome pathways4075430SYNE1		GO bi	ological proc	ess	6032	825		B2	
GO molecular function5190396MAPK9KEGG pathways, all4851236MLH1KEGG pathways, basic1878133NRAPKEGG pathways, disease74435PCDW20KEGG pathways, signaling306968PRKC 2MetaCyc pathways2933486SLC2 A2Reactome pathways4075430SYNE1		GO ce	ellular com pa	rtment	5115	233	MA	PK10	
KEGG pathways, all4851236MLH1 MN1KEGG pathways, basic1878133NRAP NTRK1KEGG pathways, disease74435PCDh20 PDZD2KEGG pathways, signaling306968PRKD2 PRKD2MetaCyc pathways2933486SLC2 A2 STK3 6 SYNE1		GOm	olecular func	tion	5190	396	MA	PK9	
KEGG pathways, basic1878133NRAP NTRK1KEGG pathways, disease74435PCDH20 PDZL2KEGG pathways, signaling306968PRKL2 PRKLCMetaCyc pathways2933486SLC2A2Reactome pathways4075430SYNE1		KEGG	ipathways,a	I	4851	236	ML	H1	
KEGG pathways, disease74435PCD 20 PDZD2KEGG pathways, signaling306968PRKD 2 PRKD CMetaCyc pathways2933486SLC2 A2 STK3 6 SYNE 1		KEGG	ipathways,b	asic	1878	133	NR. NT	AP RK1	
KEGG pathways, signaling 3069 68 PRKD 2 MetaCyc pathways 2933 486 SLC2A2 Reactom e pathways 4075 430 SYNE1		KEGG	ipathways,d	isease	744	35	PCI PD2	DH20 ZD2	
MetaCyc pathways 2933 486 PTEN SLC2A2 Reactome pathways 4075 430 STK36 SYNE1	1	KEGG	ipathways,si	gnaling	3069	68	PRI PRI	(C) 2 (C) C	
Reactome pathways 4075 430 STK36 SYNE1		Meta	Cyc pathways		2933	486	PTE	EN C2A2	
		React	tom e pathway	/5	4075	430	STI	(36 Ne1	
		Third	VIIUV	31118		ano I,	VV UG TM	FB Q211 BIM4	
TMBIM4	th	e e	zene:	s ma	anifes	t enricl	heo	ne	twork
Third-part pathways and groups 2297 64 Third-part pathways and groups 2297 64 Third-part pathways and groups 2297 64 The genes manifest enriched network		TVIKE	Junvays.nsa			175	VA	V1	

"Functional gene sets". The FGS menu on the left is not used.

There are two major modes in the analysis that can be run separately or in parallel. We can evaluate connections between a given candidate gene and a group of genes that together are likely to be implicated in the disease. Such a group can be either:

- 1) a set of altered genes discovered experimentally (typically the whole set of mutations, genetic variants, or differentially methylated or expressed genes), or
- 2) a curated gene set with well characterized functional role in the disease.

	Organism: human	•							
F	Inctional gene sets	Check and su	ıbm it 🛛 🕞	esults	Help				
t=ISO	-8859-1								
FGG	05214 GLIOMA								
	MAPH	1		gene					
		PPKOA	both	AGS and					
P53			FG S	er					
MAPI	CAMRED	SHC							
		H							
		X							
K		MAP2	2						
\Box	ARA	XT							
X	XIX	X /							
\triangleright	\times 17 $>$								
<		MAP2K1							
	CAMKZA								
							Conneti		
nks .		#genes	#links				Search:	Shared	Show
nks ≩S	FGS	∳ #genes FGS	#links _∳ FG S	#linksA	GS 2FGS	S ≑ Score ≑	Search: FDR \diamondsuit	Shared genes	Show ent
nks ≩S	FGS KEGG_05214_GLIOMA	∲ <mark>#genes</mark> FGS A 67	#links FGS 11975	#linksA 14	GS 2FGS	S ♦ Score ♦ 19.66	Search: FDR \$ 2.091255E-04	Shared genes ∲ 0	Show e
nks ≩S	FGS KEGG_05214_GLIOMA KEGG_05214_GLIOMA		#links FGS 11975 11975	#linksA 14 16	GS2FGS	S ♦ Score ♦ 19.66 57.69	Search: FDR \$ 2.091255E-04 2.972822E-12	Shared genes 0 0	Show end
nks ≩S	FGS KEGG_05214_GLIOMA KEGG_05214_GLIOMA KEGG_05214_GLIOMA	 #genes FGS A 67 A 67 A 67 A 67 	#links FGS 11975 11975 11975	#linksA 14 16 7	.GS2FGS	S ♦ Score ♦ 19.66 57.69 26.00	Search: FDR 2.091255E-04 2.972822E-12 1.100783E-05	Shared genes ∳ 0 0 0	Show end
nks ≩S	FGS KEGG_05214_GLIOMA KEGG_05214_GLIOMA KEGG_05214_GLIOMA KEGG_05214_GLIOMA	 #genes FGS A 67 A A A A A A A A A A A A A A A A A A	#links FG S 11975 11975 11975 11975	#linksA 14 16 7 9	.GS2FGS	S ♦ Score ♦ 19.66 57.69 26.00 10.14	Search: FDR 2.091255E-04 2.972822E-12 1.100783E-05 1.786068E-02	Shared genes 0 0 0 0 0	Show net
nks ≩S	FGS KEGG_05214_GLIOMA KEGG_05214_GLIOMA KEGG_05214_GLIOMA KEGG_05214_GLIOMA	 #genes FGS 67 	#links FGS 11975 11975 11975 11975 11975	#linksA 14 16 7 9 2	GS 2FGS	S ♦ Score ♦ 19.66 57.69 26.00 10.14 9.50	Search: FDR 2.091255E-04 2.972822E-12 1.100783E-05 1.786068E-02 2.409463E-02	Shared genes ♦ 0 0 0 0 0 0 0	Show net
nks ∳ \$S	FGS KEGG_05214_GLIOMA KEGG_05214_GLIOMA KEGG_05214_GLIOMA KEGG_05214_GLIOMA KEGG_05214_GLIOMA	 #genes FGS 67 67 67 67 67 67 	#links FGS 11975 11975 11975 11975 11975 11975	#linksA 14 16 7 9 2 17	.GS2FGS	S ♦ Score ♦ 19.66 57.69 26.00 10.14 9.50 38.96	Search: FDR FDR 2.091255E-04 2.972822E-12 1.100783E-05 1.786068E-02 2.409463E-02 2.572950E-08	Shared genes 0 0 0 0 0 0 0 0 0	Show net
nks ∳S	FGS KEGG_05214_GLIOMA KEGG_05214_GLIOMA KEGG_05214_GLIOMA KEGG_05214_GLIOMA KEGG_05214_GLIOMA KEGG_05214_GLIOMA	 #genes FGS 67 	#links FGS 11975 11975 11975 11975 11975 11975 11975	#linksA 14 16 7 9 2 17 11	GS2FGS	S ♦ Score ♦ 19.66 57.69 26.00 10.14 9.50 38.96 22.82	Search: FDR FDR 2.091255E-04 2.972822E-12 1.100783E-05 1.786068E-02 2.409463E-02 2.572950E-08 4.665679E-05	Shared genes	Show net
nks S	FGS KEGG_05214_GLIOMA KEGG_05214_GLIOMA KEGG_05214_GLIOMA KEGG_05214_GLIOMA KEGG_05214_GLIOMA KEGG_05214_GLIOMA KEGG_05214_GLIOMA	 #genes FGS 67 	#links FGS 11975 11975 11975 11975 11975 11975 11975 11975	#linksA 14 16 7 9 2 17 11 9	GS2FGS	S ♦ Score ♦ 19.66 57.69 26.00 10.14 9.50 38.96 22.82 15.80	Search: FDR FDR 2.091255E-04 2.972822E-12 1.100783E-05 1.786068E-02 2.409463E-02 2.572950E-08 4.665679E-05 1.265433E-03	Shared genes	Show net
nks SS	FGS KEGG_05214_GLIOMA KEGG_05214_GLIOMA KEGG_05214_GLIOMA KEGG_05214_GLIOMA KEGG_05214_GLIOMA KEGG_05214_GLIOMA KEGG_05214_GLIOMA	 #genes FGS 67 	#links FGS 11975 11975 11975 11975 11975 11975 11975 11975	#linksA 14 16 7 9 2 17 11 9	GS2FGS	S ♦ Score ♦ 19.66 57.69 26.00 10.14 9.50 38.96 22.82 15.80	Search: FDR FDR 2.091255E-04 2.972822E-12 1.100783E-02 1.786068E-02 2.409463E-02 2.572950E-08 4.665679E-05 1.265433E-03	Shared genes	Show net
nks SS	FGS KEGG_05214_GLIOMA KEGG_05214_GLIOMA KEGG_05214_GLIOMA KEGG_05214_GLIOMA KEGG_05214_GLIOMA KEGG_05214_GLIOMA KEGG_05214_GLIOMA	 #genes FGS 67 	#links FGS 11975 11975 11975 11975 11975 11975 11975 11975	#linksA 14 16 7 9 2 17 11 9	GS2FGS	S ♦ Score ♦ 19.66 57.69 26.00 10.14 9.50 38.96 22.82 15.80	Search: FDR FDR 2.091255E-04 2.972822E-12 1.100783E-05 1.786068E-02 2.409463E-02 2.572950E-08 4.665679E-05 1.265433E-03 Previou	Shared genes	Show net
nks SS	FGS KEGG_05214_GLIOMA KEGG_05214_GLIOMA KEGG_05214_GLIOMA KEGG_05214_GLIOMA KEGG_05214_GLIOMA KEGG_05214_GLIOMA KEGG_05214_GLIOMA	 #genes FGS A 67 A B	#links FGS 11975 11975 11975 11975 11975 11975 11975 11975	#linksA 14 16 7 9 2 17 11 9	GS2FGS	S ♦ Score ♦ 19.66 57.69 26.00 10.14 9.50 38.96 22.82 15.80	Search: FDR FDR 2.091255E-04 2.972822E-12 1.100783E-05 1.786068E-02 2.409463E-02 2.572950E-08 4.665679E-05 1.265433E-03 Previou	Shared genes	Show net
nks ≥s	FGS KEGG_05214_GLIOMA KEGG_05214_GLIOMA KEGG_05214_GLIOMA KEGG_05214_GLIOMA KEGG_05214_GLIOMA KEGG_05214_GLIOMA KEGG_05214_GLIOMA	 #genes FGS A 67 A A A A A B <	#links FGS 11975 11975 11975 11975 11975 11975 11975 11975	#linksA 14 16 7 9 2 17 11 9	GS 2FGS	S ♦ Score ♦ 19.66 57.69 26.00 10.14 9.50 38.96 22.82 15.80	Search: FDR FDR 2.091255E-04 2.972822E-12 1.100783E-05 1.786068E-02 2.409463E-02 2.572950E-08 4.665679E-05 1.265433E-03 Previou	Shared genes ● 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1	Show net
nks ≩S	FGS KEGG_05214_GLIOMA KEGG_05214_GLIOMA KEGG_05214_GLIOMA KEGG_05214_GLIOMA KEGG_05214_GLIOMA KEGG_05214_GLIOMA Send us email	 #genes FGS 67 67 67 67 67 67 67 67 67 67 67 67 67 67 67	#links FGS 11975 11975 11975 11975 11975 11975 11975 11975	#linksA 14 16 7 9 2 17 11 9	GS2FGS	S ♦ Score ♦ 19.66 57.69 26.00 10.14 9.50 38.96 22.82 15.80	Search: FDR FDR 2.091255E-04 2.972822E-12 1.100783E-05 1.786068E-02 2.409463E-02 2.572950E-08 4.665679E-05 1.265433E-03 Previou	Shared genes 0 <tr< td=""><td>Show net</td></tr<>	Show net
nks §S	FGS KEGG_05214_GLIOMA KEGG_05214_GLIOMA KEGG_05214_GLIOMA KEGG_05214_GLIOMA KEGG_05214_GLIOMA KEGG_05214_GLIOMA Send us email	 #genes FGS A 67 A A A A A A A B A B <p< td=""><td>#links FGS</td><td>#linksA 14 16 7 9 2 17 11 9 9</td><td>GS2FGS</td><td>S Score S 19.66 57.69 26.00 10.14 9.50 38.96 22.82 15.80</td><td>Search: FDR 2.091255E-04 2.972822E-12 1.100783E-05 1.786068E-02 2.409463E-02 2.572950E-08 4.665679E-05 1.265433E-03 Previou</td><td>Shared genes 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0</td><td>Show net</td></p<>	#links FGS	#linksA 14 16 7 9 2 17 11 9 9	GS2FGS	S Score S 19.66 57.69 26.00 10.14 9.50 38.96 22.82 15.80	Search: FDR 2.091255E-04 2.972822E-12 1.100783E-05 1.786068E-02 2.409463E-02 2.572950E-08 4.665679E-05 1.265433E-03 Previou	Shared genes 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Show net

